Modified gaussian model for fitting thermal performance curves
Source:R/modifiedgaussian_2006.R
modifiedgaussian_2006.Rd
Modified gaussian model for fitting thermal performance curves
Value
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Details
Equation: $$rate = r_{max} \cdot exp^{\bigg[-0.5 \left(\frac{|temp-t_{opt}|}{a}\right)^b\bigg]}$$
Start values in get_start_vals
are derived from the data and gaussian_1987
Limits in get_lower_lims
and get_upper_lims
are based on extreme values that are unlikely to occur in ecological settings.
References
Angilletta Jr, M. J. (2006). Estimating and comparing thermal performance curves. Journal of Thermal Biology, 31(7), 541-545.
Examples
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'modifiedgaussian_2006')
# fit model
mod <- nls.multstart::nls_multstart(rate~modifiedgaussian_2006(temp = temp, rmax, topt, a, b),
data = d,
iter = c(3,3,3,3),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'modifiedgaussian_2006'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'modifiedgaussian_2006'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
#>
#> Formula: rate ~ modifiedgaussian_2006(temp = temp, rmax, topt, a, b)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> rmax 1.0016 2.0113 0.498 0.632
#> topt 37.0000 2.6631 13.893 6.97e-07 ***
#> a 23.0120 91.1292 0.253 0.807
#> b 0.7888 7.1276 0.111 0.915
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.5851 on 8 degrees of freedom
#>
#> Number of iterations to convergence: 20
#> Achieved convergence tolerance: 1.49e-08
#>
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()