Skip to contents

flexTPC model for fitting thermal performance curves

Usage

flextpc_2024(temp, tmin, tmax, rmax, alpha, beta)

Arguments

temp

temperature in degrees centigrade

tmin

low temperature (ºC) at which rates become negative

tmax

high temperature (ºC) at which rates become negative

rmax

maximum performance/value of the trait

alpha

shape parameter to adjust the asymmetry and direction of skew of the curve

beta

shape parameter to adjust the breadth of the curve

Value

a numeric vector of rate values based on the temperatures and parameter values provided to the function

Details

Equation: $$rate=r_{\text{max}}\left[\left(\frac{T - T_{\text{min}}}{\alpha}\right)^\alpha\left(\frac{T_{\text{max}}-T}{1-\alpha}\right)^{1-\alpha}\left(\frac{1}{T_{\text{max}}-T_{\text{min}}}\right)\right]^{\frac{\alpha(1-\alpha)}{\beta^2}}$$

Start values in get_start_vals are derived from the data or sensible values from the literature.

Limits in get_lower_lims and get_upper_lims are derived from the data or based extreme values that are unlikely to occur in ecological settings.

Note

Generally this model requires larger iter values in nls_multstart to fit reliably.

References

Cruz-Loya M, Mordecai EA, Savage VM. A flexible model for thermal performance curves. bioRxiv [Preprint]. 2024

Author

Francis Windram

Examples

# load in ggplot
library(ggplot2)

# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)

# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'flextpc_2024')
# fit model
mod <- nls.multstart::nls_multstart(rate~flextpc_2024(temp = temp, tmin, tmax, rmax, alpha, beta),
data = d,
iter = c(5,5,5,5,5),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'flextpc_2024'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'flextpc_2024'),
supp_errors = 'Y',
convergence_count = FALSE)

# look at model fit
summary(mod)
#> 
#> Formula: rate ~ flextpc_2024(temp = temp, tmin, tmax, rmax, alpha, beta)
#> 
#> Parameters:
#>        Estimate Std. Error t value Pr(>|t|)    
#> tmin  -34.00000  426.36779  -0.080  0.93867    
#> tmax   49.00000   10.20440   4.802  0.00196 ** 
#> rmax    1.56721    0.19818   7.908 9.81e-05 ***
#> alpha   0.86971    0.58012   1.499  0.17751    
#> beta    0.08336    0.46069   0.181  0.86154    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.2794 on 7 degrees of freedom
#> 
#> Number of iterations to convergence: 36 
#> Achieved convergence tolerance: 1.49e-08
#> 

# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)

# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()