Hinshelwood model for fitting thermal performance curves
Source:R/hinshelwood_1947.R
hinshelwood_1947.Rd
Hinshelwood model for fitting thermal performance curves
Value
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Details
Equation: $$rate=a \cdot exp^{\frac{-e}{k \cdot (temp + 273.15)}} - b \cdot exp^\frac{-e_h}{k \cdot (temp + 273.15)}$$
where k
is Boltzmann's constant with a value of 8.62e-05
Start values in get_start_vals
are taken from the literature.
Limits in get_lower_lims
and get_upper_lims
are based on extreme values that are unlikely to occur in ecological settings.
References
Hinshelwood C.N. The Chemical Kinetics of the Bacterial Cell. Oxford University Press. (1947)
Examples
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'hinshelwood_1947')
# fit model
mod <- nls.multstart::nls_multstart(rate~hinshelwood_1947(temp = temp,a, e, b, eh),
data = d,
iter = c(5,5,5,5),
start_lower = start_vals - 1,
start_upper = start_vals + 1,
lower = get_lower_lims(d$temp, d$rate, model_name = 'hinshelwood_1947'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'hinshelwood_1947'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
#>
#> Formula: rate ~ hinshelwood_1947(temp = temp, a, e, b, eh)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> a 1.104e+10 2.530e+11 0.044 0.966
#> e 6.045e-01 5.823e-01 1.038 0.330
#> b 1.479e+26 9.735e+27 0.015 0.988
#> eh 1.635e+00 1.878e+00 0.870 0.409
#>
#> Residual standard error: 0.3846 on 8 degrees of freedom
#>
#> Number of iterations till stop: 96
#> Achieved convergence tolerance: 1.49e-08
#> Reason stopped: Number of calls to `fcn' has reached or exceeded `maxfev' == 500.
#>
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()