Skip to contents

Pawar model for fitting thermal performance curves

Usage

pawar_2018(temp, r_tref, e, eh, topt, tref)

Arguments

temp

temperature in degrees centigrade

r_tref

rate at the standardised temperature, tref

e

activation energy (eV)

eh

high temperature de-activation energy (eV)

topt

optimum temperature (ºC)

tref

standardisation temperature in degrees centigrade. Temperature at which rates are not inactivated by high temperatures

Value

a numeric vector of rate values based on the temperatures and parameter values provided to the function

Details

This model is a modified version of sharpeschoolhigh_1981 that explicitly models the optimum temperature. Equation: $$rate= \frac{r_{tref} \cdot exp^{\frac{-e}{k} (\frac{1}{temp + 273.15}-\frac{1}{t_{ref} + 273.15})}}{1 + (\frac{e}{eh - e}) \cdot exp^{\frac{e_h}{k}(\frac{1}{t_opt + 273.15}-\frac{1}{temp + 273.15})}}$$

where k is Boltzmann's constant with a value of 8.62e-05.

Start values in get_start_vals are derived from the data.

Limits in get_lower_lims and get_upper_lims are derived from the data or based extreme values that are unlikely to occur in ecological settings.

Note

Generally we found this model easy to fit.

References

Kontopoulos, Dimitrios - Georgios, Bernardo García-Carreras, Sofía Sal, Thomas P. Smith, and Samraat Pawar. Use and Misuse of Temperature Normalisation in Meta-Analyses of Thermal Responses of Biological Traits. PeerJ. 6 (2018),

Author

Daniel Padfield

Examples

# load in ggplot
library(ggplot2)
library(nls.multstart)

# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)

# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'pawar_2018')
# fit model
mod <- nls_multstart(rate~pawar_2018(temp = temp, r_tref, e, eh, topt, tref = 20),
data = d,
iter = c(3,3,3,3),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'pawar_2018'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'pawar_2018'),
supp_errors = 'Y',
convergence_count = FALSE)

# look at model fit
summary(mod)
#> 
#> Formula: rate ~ pawar_2018(temp = temp, r_tref, e, eh, topt, tref = 20)
#> 
#> Parameters:
#>        Estimate Std. Error t value Pr(>|t|)    
#> r_tref  0.38722    0.08016   4.831 0.001303 ** 
#> e       0.58264    0.10186   5.720 0.000444 ***
#> eh     14.20311   12.83602   1.107 0.300668    
#> topt   41.64610    0.77956  53.423 1.67e-11 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1982 on 8 degrees of freedom
#> 
#> Number of iterations to convergence: 33 
#> Achieved convergence tolerance: 1.49e-08
#> 

# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)

# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()