Skip to contents

Stinner model for fitting thermal performance curves

Usage

stinner_1974(temp, rmax, topt, a, b)

Arguments

temp

temperature in degrees centigrade

rmax

the maximum rate

topt

optimum temperature (ºC) at which rates are maximal

a

dimensionless parameter

b

dimensionless parameter

Value

a numeric vector of rate values based on the temperatures and parameter values provided to the function

Details

Equation: $$\textrm{if} \quad temp <= t_{opt}: rate = rmax \cdot \frac{1 + exp^{a + b \cdot t_{opt}}}{(1 + exp^{a + b \cdot temp}}$$ $$\textrm{if} \quad temp <= t_{opt}: rate = rmax \cdot \frac{1 + exp^{a + b \cdot t_{opt}}}{(1 + exp^{a + b \cdot (2 \cdot t_{opt} - temp)}}$$

Start values in get_start_vals are derived from the data or sensible values from the literature.

Limits in get_lower_lims and get_upper_lims are derived from the data or based extreme values that are unlikely to occur in ecological settings.

Note

Generally we found this model easy to fit.

References

Stinner, R. E., Gutierrez, A. P., & Butler Jr, G. D. (1974). An algorithm for temperature-dependent growth rate simulation12. The Canadian Entomologist, 106(5), 519-524.

Author

Daniel Padfield

Examples

# load in ggplot
library(ggplot2)

# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)

# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'stinner_1974')
# fit model
mod <- nls.multstart::nls_multstart(rate~stinner_1974(temp = temp, rmax, topt, a, b),
data = d,
iter = c(5,5,5,5),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'stinner_1974'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'stinner_1974'),
supp_errors = 'Y',
convergence_count = FALSE)

# look at model fit
summary(mod)
#> 
#> Formula: rate ~ stinner_1974(temp = temp, rmax, topt, a, b)
#> 
#> Parameters:
#>      Estimate Std. Error t value Pr(>|t|)    
#> rmax   1.3561     0.1736   7.813 5.18e-05 ***
#> topt  35.8015     0.7858  45.558 5.95e-11 ***
#> a     25.1686    14.7144   1.710    0.126    
#> b     -0.9365     0.5479  -1.709    0.126    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.3192 on 8 degrees of freedom
#> 
#> Number of iterations till stop: 98 
#> Achieved convergence tolerance: 1.49e-08
#> Reason stopped: Number of calls to `fcn' has reached or exceeded `maxfev' == 500.
#> 

# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)

# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()