Thomas model (2012) for fitting thermal performance curves
Value
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Details
Equation: $$rate = a \cdot exp^{b \cdot temp} \bigg(1-\bigg(\frac{temp - t_{ref}}{c/2}\bigg)^2\bigg)$$
Start values in get_start_vals
are derived from the data.
Limits in get_lower_lims
and get_upper_lims
are derived from the data or based on extreme values that are unlikely to occur in ecological settings.
References
Thomas, Mridul K., et al. A global pattern of thermal adaptation in marine phytoplankton. Science 338.6110, 1085-1088 (2012)
Examples
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'thomas_2012')
# fit model
mod <- nls.multstart::nls_multstart(rate~thomas_2012(temp = temp, a, b, c, tref),
data = d,
iter = c(4,4,4,4),
start_lower = start_vals - 1,
start_upper = start_vals + 2,
lower = get_lower_lims(d$temp, d$rate, model_name = 'thomas_2012'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'thomas_2012'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
#>
#> Formula: rate ~ thomas_2012(temp = temp, a, b, c, tref)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> a 0.20859 0.20466 1.019 0.337937
#> b 0.05296 0.02782 1.904 0.093414 .
#> c 33.30540 4.79114 6.951 0.000118 ***
#> tref 32.08003 2.47486 12.962 1.19e-06 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.3351 on 8 degrees of freedom
#>
#> Number of iterations to convergence: 25
#> Achieved convergence tolerance: 1.49e-08
#>
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()