Tomlinson-Phillips model for fitting thermal performance curves
Source:R/tomlinsonphillips_2015.R
tomlinsonphillips_2015.Rd
Tomlinson-Phillips model for fitting thermal performance curves
Value
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Details
Equation: $$rate = a \cdot [\exp{(b \cdot T) - \exp{(T-c)}}]$$
Start values in get_start_vals
are derived from the data or sensible values from the literature.
Limits in get_lower_lims
and get_upper_lims
are derived from the data or based extreme values that are unlikely to occur in ecological settings.
References
Tomlinson, S. & Phillips, R. D. Differences in metabolic rate and evaporative water loss associated with sexual dimorphism in thynnine wasps. J. Insect Physiol. 78, 62–68 (2015).
Examples
# \donttest{
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'tomlinsonphillips_2015')
# fit model
mod <- nls.multstart::nls_multstart(rate~tomlinsonphillips_2015(temp = temp, a, b, c),
data = d,
iter = c(3,3,3),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'tomlinsonphillips_2015'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'tomlinsonphillips_2015'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
#>
#> Formula: rate ~ tomlinsonphillips_2015(temp = temp, a, b, c)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> a 0.32024 0.26234 1.221 0.253
#> b 0.02922 0.02230 1.310 0.223
#> c 47.66374 1.21665 39.176 2.29e-11 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.5378 on 9 degrees of freedom
#>
#> Number of iterations to convergence: 81
#> Achieved convergence tolerance: 1.49e-08
#>
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()
# }