Warren-Dreyer model for fitting thermal performance curves
Source:R/warrendreyer_2006.R
warrendreyer_2006.Rd
Warren-Dreyer model for fitting thermal performance curves
Value
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Details
Equation: $$rate = R_{\text{max}} \cdot \exp{\left[-0.5 \cdot \left(\frac{\ln{\frac{T}{T_{\text{opt}}}}}{a}\right)^2\right]}$$
Start values in get_start_vals
are derived from the data or sensible values from the literature.
Limits in get_lower_lims
and get_upper_lims
are derived from the data or based extreme values that are unlikely to occur in ecological settings.
References
Warren, C. R. & Dreyer, E. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J. Exp. Bot. 57, 3057–3067 (2006).
Examples
# \donttest{
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'warrendreyer_2006')
# fit model
mod <- nls.multstart::nls_multstart(rate~warrendreyer_2006(temp = temp, rmax, topt, a),
data = d,
iter = c(3,3,3),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'warrendreyer_2006'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'warrendreyer_2006'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
#>
#> Formula: rate ~ warrendreyer_2006(temp = temp, rmax, topt, a)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> rmax 1.46485 0.22630 6.473 0.000115 ***
#> topt 35.35356 1.31116 26.963 6.43e-10 ***
#> a 0.20583 0.04062 5.068 0.000674 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.3732 on 9 degrees of freedom
#>
#> Number of iterations to convergence: 29
#> Achieved convergence tolerance: 1.49e-08
#>
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()
# }